Имя «Хаббла» стало нарицательным для телескопа. Далеко не каждый может вспомнить, чем занимаются «Спитцер» или «Кеплер», но «Хаббл» знают все. Его фотографии перекочевали на логотипы браузеров, обложки музыкальных альбомов и принты на одежде. Это тот редкий случай, когда исключительная известность полностью соответствует научной значимости: данные телескопа позволили сделать открытия самого фундаментального, космологического уровня. Однако, если начинать вспоминать историю «Хаббла», очень быстро становится понятно, что всего этого могло бы и не быть, если бы не свернутая сейчас программа космических шаттлов.
Чтобы запустить в таких условиях достаточно эффективный аппарат, пришлось не только привлечь к финансированию Европейское космическое агентство, но и проявить чудеса изобретательности. Вместо трехметрового зеркала решили использовать 2,4-метровое, по образцу зеркал американских спутников-шпионов проекта KH-11, благо технологии его создания уже не требовали отработки.
Она произвела революцию в передаче снимков со спутников: вместо ловли аналоговых пленок на вертолетах стало возможным посылать оцифрованные данные наблюдений обычной радиопередачей. «Шпионские» ПЗС-матрицы, правда, пришлось дорабатывать – они работали только в видимом диапазоне. Решить эту проблему удалось с помощью специального покрытия.
Несколько хуже оказалось ситуация с зеркалом. Компания Perkin-Elmer, начавшая его изготовление в 1979 году, одновременно делала такие же зеркала для целой серии военных спутников. Как впоследствии жаловались в NASA, Perkin-Elmer «доверили проект не лучшим своим оптикам». Хотя зеркало «Хаббла» было отполировано с феноменальной точностью до 10 нанометров, эта процедура заняла у компании целых шесть лет, а лимит расходов был превышен в несколько раз. Получив окно запуска на 1986 год, проект «Хаббл» вытянул не лучший жребий. В том самом году произошла катастрофа «Челленджера», на годы свернувшая полеты шаттлов. Поскольку США в те годы не могли законтрактовать «Протоны» или Falcon, запуск состоялся лишь 24 апреля 1990 года на борту «Дискавери».
Сверхновые типа Ia возникают на базе однородных объектов – белых карликов. Они «вытягивают» так много газа из звезды-соседа, что превышают предел Чандрасекара в 1,44 солнечных масс. После этого тяготение белого карлика становится таким мощным, что он коллапсирует в нейтронную звезду — это сопровождается мощным термоядерным взрывом во внешних слоях. А раз взрыв происходит при одной и той же массе, значит и светимость взрывов сверхновых типа Ia всегда одинакова. Остается лишь сравнить красное смещение (скорость удаления от земного наблюдателя) с абсолютной яркостью, чтобы понять, насколько далеко от нас расположена каждая такая сверхновая, и с какой скоростью она от нас удаляется.
В 1998 году сразу несколько групп исследователей (Перлмуттера, Шмидта и Рейса) обнаружили, что сверхновые этого типа с определенного момента – примерно 5 миллиардов лет назад – стали удаляться от нас чересчур быстро – быстрее, чем предполагала физическая картина мира того времени. Все ранее существовавшие космологические модели предполагали, что расширение Вселенной замедляется – и оказались неверны. Именно так было открыто ускоряющееся расширение Вселенной.
Это открытие, в котором именно «Хаббл» сыграл одну из ключевых ролей, заставило предположить существование некоего фактора, заставляющего Вселенную расширяться вопреки силам притяжении между звездами и галактиками. Такой фактор получил названиетемной энергии, предположительно равномерно заполняющей все существующее пространство и отличающейся от обычной отрицательным давлением, «расталкивающим» Вселенную в разные стороны. У этой концепции еще очень много проблем: напрямую обнаружить темную энергию (по массе доминирующую во Вселенной) пока не удается, нет и точного теоретического понимания ее природы.
Тем не менее уже сейчас она изменила наше представление о будущем Вселенной. Теперь мы знаем, что благодаря темной энергии со временем все звезды за пределами нашего сверхскопления галактик исчезнут за горизонтом событий. Эти наблюдения за сверхновыми сделали стандартной нынешнюю космологическую модель Лямбда-CDM, которая до того считалась расходящейся с астрономическими наблюдениями.
Близкими по значимости были открытия, совершенные «Хабблом» в отношении прошлого Вселенной. Измеряя скорость ее расширения, телескоп помог уточнить постоянную Хаббла во много раз, в результате чего возраст Вселенной, ранее оценивавшийся в 12-15 млрд лет, был уточнен до 13,8 млрд лет.
Вплоть до сего дня теоретики все еще работают над тем, какие именно механизмы ответственны за столь быстрое появление звезд и галактик. Но каким ни был ответ на этот вопрос, он существенно изменит наше представление о далеком прошлом Вселенной.
Уже в 2001 году спектрографам этой космической обсерватории удалось выявить следы натрия в атмосфере гигантской экзопланеты, впервые дав человечеству достоверные сведения о химическом составе атмосфер за пределами Солнечной системы. А в 2008 году в газовой оболочке другой планеты-гиганта обнаружились молекулы воды и метана. Конечно, исходно телескоп не планировали использовать для анализа экзопланетных атмосфер, все эти открытия делались на пределе его возможностей. Тем не менее, они породили идею создания специализированных космических телескопов как раз для для поиска следов кислорода и хлорофилла в атмосфере небольших экзопланет в зоне обитаемости. Излишне говорить, какими могут быть последствия подобных открытий.
Данные телескопа не породили бы 12 800 научных статей, если бы Институт космического телескопа, учрежденный NASA для обработки данных аппарата, не ввел политику открытого распределения полученных данных среди научных коллективов по всему миру. Именно в таких архивных данных телескопа сторонними исследователями были обнаружены несколько спутников Плутона и Нептуна, не говоря о массе других находок. Возникло понимание того, что столь мощный инструмент просто не использовать без открытости научных данных, поэтому множество последующих космических телескопов также перешли на ту же модель «раздачи» информации. Именно так возникло сообществу волонтеров-любителей Planet Hunters, которыесмогли найти в открытых данных «Кеплера» десятки планет, незамеченных профессионалами.
Многолетняя эксплуатация «Хаббла» сформировала четкое техническое видение того, какими должны быть его преемники. И готовящийся к запуску в 2017 году Transiting Exoplanet Survey Satellite (Спутник изучения транзитных экзопланет, TESS) и «Джеймс Уэбб», что взлетит в 2018 году, не будут использовать низкую околоземную орбиту, как «Хаббл». Их разместят на удалении в миллион-полтора километра от Земли, где на них минимально будет влиять ее гравитация (в т.ч. в точке Лагранжа) и свет Солнца.
Чтобы преуспеть там, где не справился предшественник, они будут оснащены более совершенными ПЗС-матрицами, и складными зеркалами («Уэбб») из шестигранников, общим диаметром 6,5 м – это в десятки раз больше по площади, чем зеркало, которое «Хаббл» позаимствовал у спутников-шпионов 70-х. Новое зеркало делают не из стекла, а из бериллия, поэтому оно намного тоньше и легче на единицу площади.
Считается, что благодаря этому зеркалу «Джеймс Уэбб» сможет собрать ИК-излучения как от самых ранних звезд и галактик Вселенной, так и от экзопланет красных карликов в окрестностях Солнечной системы. Предполагается, что коронограф, позволяющий затенять свет звезды наблюдаемой системы, позволит аппарату выявить у них и следы жизни – если они там, конечно, будут.
Для детального анализа землеподобных планет у желтых звезд типа Солнца возможностей нового телескопа не хватит: слишком далеки такие планеты от своей звезды и слишком трудно их наблюдать. Но если учесть, что большинство звезд Вселенной являются не желтыми, а красными карликами, где зона обитаемости много ближе к светилу, то перспективы поиска жизни за пределами Солнечной системы начинают выглядеть умеренно оптимистично.
Борис Александров
Немає коментарів:
Дописати коментар